Respuesta :
Answer:
8 unit^3
Step-by-step explanation:
Given:
- The equation of the plane is:
3x + 6y + 2z = 12
Find:
Use a double integral to find the volume of the solid in the first octant which is enclosed by the plane and the coordinate planes
Solution:
- Express the equation of surface ( plane ) as a subject of any coordinate axis we will use z:
2z = 12 - 3x - 6y
z = 6 - 1.5x - 3y
- The double integral would be set- up as:
[tex]\int\limits^d_c \int\limits^a_b ({6 - 1.5x - 3y}) \, dy.dx[/tex]
- Where, a , b ,c and d are limits of integration.
- To determine the limits we will project the surface to x-y plane or z = 0 plane, the equation we have is:
0 = 6 - 1.5x - 3y
y = 2 - 0.5x
- For limits a and b the integration is with respect to y, so we express the limits of y in terms of x. Where lower limit b = 0, and upper limit a = 2 - 0.5x
- Similarly, the limits c and d is with respect to x are constants we have:
c = 0
0 = 2 - 0.5*d
d = 4
- Then solve the double integral:
[tex]\int\limits^4_0 ({6y - 1.5xy - 1.5y^2}) \,_0 ^2^-^0^.^5^x dx \\\\\int\limits^4_0 ({6(2-0.5x) - 3x + 0.75x^2 - 1.5(2-0.5x)^2}) dx \\\\({-6(2-0.5x)^2 - 1.5x^2 +0.25x^3 + (2-0.5x)^3}) | ^4_0\\\\= ( -6(0) - 1.5(16) + 0.25*(64) + (0) + 6(4) + 0 + 0 - (8) ) \\\\= 8 unit^3[/tex]
Otras preguntas
Convert the population of Texas to Scientific notation. There are 28,000,000 people living in Texas.
Aiko says to find the LCM, you can just multiply the two numbers. As a teacher, how do you respond?